Structural environment of an essential cysteine residue of xylanase from Chainia sp. (NCL 82.5.1)

Author:

RAO Mala1,KHADILKAR Suvarna1,BANDIVADEKAR Kavita R.1,DESHPANDE Vasanti1

Affiliation:

1. Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India

Abstract

N-(2,4-Dinitroanilino)maleimide (DAM) reacts covalently with the thiol group of the xylanase from Chainia leading to complete inactivation in a manner similar to N-ethylmaleimide, but provides a reporter group at the active site of the enzyme. Increasing amounts of xylan offered enhanced protection against inactivation of the xylanase by DAM. Xylan (5 mg) showed complete protection, providing evidence for the presence of cysteine at the substrate-binding site of the enzyme. Kinetics of chemical modification of the xylanase by DAM indicated the involvement of l mol of cysteine residue per mol of enzyme, as reported earlier [Deshpande, Hinge and Rao (1990) Biochim. Biophys. Acta 1041, 172–177]. The second-order rate constant for the reaction of DAM with the enzyme was 3.61×103 M-1·min-1. The purified xylanase was alkylated with DAM and digested with pepsin. The peptides were separated by gel filtration. The specific modified cysteinyl peptide was further purified by reverse-phase HPLC. The active-site peptide was located visually by its predominant yellow colour and characterized by a higher A340 to A210 ratio. The modified active-site peptide has the sequence: Glu-Thr-Phe-Xaa-Asp. The sequence of the peptide was distinctly different from that of cysteinyl peptide derived from a xylanase from a thermotolerant Streptomyces species, but showed the presence of a conserved aspartic acid residue consistent with the catalytic regions of other glucanases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3