Molecular orientation of Factor VIIIa on the phospholipid membrane surface determined by fluorescence resonance energy transfer

Author:

Wakabayashi Hironao1,Fay Philip J.1

Affiliation:

1. Department of Biochemistry and Biophysics, University of Rochester School of Medicine, 601 Elmwood Ave., Rochester, NY 14642, U.S.A.

Abstract

F (Factor) VIIIa binds to phospholipid membranes during formation of the FXase complex. Free thiols from cysteine residues of isolated FVIIIa A1 and A2 subunits and the A3 domain of the A3C1C2 subunit were labelled with PyMPO maleimide {1-(2-maleimidylethyl)-4-[5-(4-methoxyphenyl)-oxazol-2-yl]pyridinium methanesulfonate} or fluorescein (fluorescence donors). Double mutations of the A3 domain (C2000S/T1872C and C2000S/D1828C) were also produced to utilize Cys1828 and Cys1872 residues for labelling. Labelled subunits were reacted with complementary non-labelled subunits to reconstitute FVIIIa. Octadecylrhodamine incorporated into phospholipid vesicles was used as an acceptor for distance measurements between FVIII residues and membrane surface by fluorescence resonance energy transfer. The results of the present study indicate that a FVIII axis on a plane that intersects the approximate centre of each domain is orientated with a tilt angle of ~30–50° on the membrane surface. This orientation predicted the existence of contacts mediated by residues 1713–1725 in the A3 domain in addition to a large area of contacts within the C domains. FVIII variants where Arg1719 or Arg1721 were mutated to aspartate showed a >40-fold reduction in membrane affinity. These results identify possible orientations for FVIIIa bound to the membrane surface and support a new interaction between the A3 domain and the membrane probably mediated in part by Arg1719 and Arg1721.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3