Sarco/endoplasmic reticulum Ca2+-ATPase isoforms: diverse responses to acidosis

Author:

WOLOSKER Herman1,ROCHA Joao B. T.2,ENGELENDER Simone1,PANIZZUTTI Rogerio1,MIRANDA Joari De1,MEIS Leopoldo de1

Affiliation:

1. Departamento de Bioquimica Médica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Ilha do Fundao, 21941-590, Rio de Janeiro, RJ, Brazil

2. Departamento de Química, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Camobi, 97119-900, Santa Maria, RS, Brazil

Abstract

The effects of acidic pH on the kinetics of Ca2+-ATPase isoforms from intracellular membranes of skeletal muscle, cardiac muscle, cerebellum and blood platelets were studied. At neutral pH, all four Ca2+-ATPase isoforms exhibited similar Ca2+-concentration requirements for half-maximal rates of Ca2+ uptake and ATP hydrolysis. A decrease in the pH from 7.0 to 6.0 promoted a decrease in both the apparent affinity for Ca2+ [increasing half-maximal activation (K0.5)] and the maximal velocity (Vmax) of Ca2+ uptake. With skeletal muscle vesicles these effects were 5 to 10 times smaller than those observed with all the other isoforms. Acidification of the medium from pH 7.0 to 6.5 caused the release of Ca2+ from loaded vesicles and a decrease in the amount of Ca2+ retained by the vesicles at the steady state. With the vesicles derived from skeletal muscle these effects were smaller than for vesicles derived from other tissues. The rate of passive Ca2+ efflux from skeletal and cardiac muscle vesicles, loaded with Ca2+ and diluted in a medium containing none of the ligands of Ca2+-ATPase, was the same at pH 7.0 and 6.0. In contrast, the rate of Ca2+ efflux from cerebellar and platelet vesicles increased 2-fold after acidification of the medium. The effects of DMSO, Mg2+ with Pi and arsenate on the rate of Ca2+ efflux varied among the different preparations tested. The differences became more pronounced when the pH of the medium was decreased from 7.0 to 6.0. It is proposed that the kinetic differences among the Ca2+-ATPase isoforms may reflect different adaptations to cellular acidosis, such as that which occurs during ischaemia.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3