Kinetic and spectroscopic properties of the cyanide complexes of ferrous haemoglobins I and IV from trout blood

Author:

ANTONINI Giovanni12,BELLELLI Andrea1,BRUNORI Maurizio1,FALCIONI Giancarlo3

Affiliation:

1. Department of Biochemical Sciences, University of Rome ‘La Sapienza’ and CNR Center of Molecular Biology, Plazza Aldo Moro 5, 00185, Rome, Italy

2. Department of Pure and Applied Biology, University of L'Aquila, L'Aquila, Italy

3. Department of Cell Biology, University of Camerino, Camerino, Italy

Abstract

The cyanide ion is a ligand of ferrous as well as ferric haemoproteins and this study presents a kinetic characterization of the dissociation of its complexes with the two main haemoglobin components from trout blood. Both these haemoglobins bind oxygen co-operatively at neutral or alkaline pH values but one of them is insensitive to pH and allosteric effectors (haemoglobin I, HbI) while the other (haemoglobin IV, HbIV) is strongly sensitive and shows the so-called Root effect (i.e. the incomplete oxygen saturation in air-equilibrated solutions at pH values of < 6.5). Comparison of the kinetics of dissociation of cyanide from ferrous forms of HbI and HbIV reveals that: (i) cyanide dissociates in both cases by a complex reaction, and, at least in the case of HbIV, this may be attributed to functional differences between the α and β subunits; (ii) the reaction is only scarcely co-operative in HbI and not at all so in HbIV; and (iii) the Bohr and Root effects are not manifested in this reaction. The functional heterogeneity of ferrous α and β chains of trout HbI has not been observed for any other ligand; moreover, the observation that co-operativity for cyanide dissociation is expressed by human haemoglobin but not by trout HbIV is surprising.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3