Fatty acids induce release of Ca2+ from acidosomal stores and activate capacitative Ca2+ entry in Dictyostelium discoideum

Author:

SCHALOSKE Ralph1,SONNEMANN Jürgen1,MALCHOW Dieter1,SCHLATTERER Christina1

Affiliation:

1. Fakultät für Biologie, Universität Konstanz, D-78457 Konstanz, Germany

Abstract

cAMP-induced Ca2+ fluxes in Dictyostelium discoideum largely depend on phospholipase A2 activity generating non-esterified fatty acids [Schaloske and Malchow (1997) Biochem. J. 327, 233–238]. In the present study the effect of fatty acids on Ca2+ homoeostasis in D. discoideum was investigated. Cytosolic free Ca2+ concentration ([Ca2+]i) was analysed by digital imaging of single fura 2–dextran-loaded cells. Arachidonic acid and linoleic acid induced a transient increase in [Ca2+]i. The concentration of arachidonic acid determined the percentage of responding cells, with the mean height of the increase being dose-independent. In nominally Ca2+-free medium or in the presence of bis-(o-aminophenoxy)ethane-N,N,N´,N´-tetra-acetic acid (BAPTA), no [Ca2+]i transient was detectable. In spite of this, we found that (1) arachidonic acid induced Ca2+ release from permeabilized cells and from vesicular fractions at concentrations that elicited Ca2+ influx in intact cells and (2) Ca2+ entry was inhibited by inhibitors of Ca2+-transport ATPases and V-type H+-ATPase, indicating that intracellular Ca2+ release precedes Ca2+ entry. Inhibition studies and mutant analysis point to the acidosomal Ca2+ stores as a target of fatty acids. Although fatty acids can substitute fully for cAMP with respect to Ca2+ influx in wild-type cells, experiments with a mutant strain revealed that cAMP also sensitizes the Ca2+-entry mechanism: cAMP-induced Ca2+ influx was normal in a phospholipase C knockout mutant but influx was fairly insensitive to arachidonic acid in this strain. This defect could be overcome by higher doses of arachidonic acid which cause sufficient Ca2+ to be released from the stores to trigger extracellular Ca2+ entry.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3