Biosynthesis of immunoglobulin A (IgA) and immunoglobulin M (IgM). Requirement for J chain and a disulphide-exchanging enzyme for polymerization

Author:

Corte E. Della1,Parkhouse R. M. E.1

Affiliation:

1. National Institute for Medical Research, Mill Hill, London NW7 1AA, U.K.

Abstract

Mouse myeloma cells secreting 19S IgM (immunoglobulin M) (MOPC 104E and TEPC 183) or monomer and polymer IgA (immunoglobulin A) (MOPC 315) were incubated with radioactive leucine and the intracellular and secreted immunoglobulins and immunoglobulin subunits were prepared by preparative sucrose-density-gradient centrifugation. Samples were reduced in the presence or absence of isolated J chain, passed over Sephadex G-25 and then incubated at 37°C for 30min with or without a source of disulphide-interchange enzyme. The extent of reassembly of reduced subunits was then evaluated by electrophoresis in polyacrylamide gels. Provided that J chain and the disulphide-interchange enzyme were supplied, both IgM and IgA could be assembled from their respective subunits, obtained by reductive cleavage of polymeric forms. Under similar conditions, assembly of polymeric forms from intracellular or secreted 7S monomer subunits also occurred. Under these conditions polymerization was total, there being no residue of the monomeric form. Reassembly did not occur in the absence of either J chain or the enzyme. All of the J chain released from IgM by reductive cleavage was incorporated back into the reassembled polymer. The J chain is therefore likely to be an essential structural requirement for polymeric immunoglobulins. A variety of controls ruled out non-specific interactions, and further suggested that the amino acid sequence of polypeptide chains determines the specificity of polymerization. The fact that intracellular IgA and IgM monomer subunits known to be deficient in galactose and fucose can be completely polymerized suggests that the addition of carbohydrate does not control polymerization.

Publisher

Portland Press Ltd.

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3