Structure and cholesterol domain dynamics of an enriched caveolae/raft isolate

Author:

GALLEGOS Adalberto M.1,McINTOSH Avery L.2,ATSHAVES Barbara P.2,SCHROEDER Friedhelm2

Affiliation:

1. Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, U.S.A.

2. Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, U.S.A.

Abstract

Despite the importance of cholesterol in the formation and function of caveolar microdomains in plasma membranes, almost nothing is known regarding the structural properties, cholesterol dynamics or intracellular factors affecting caveolar cholesterol dynamics. A non-detergent method was employed to isolate caveolae/raft domains from purified plasma membranes of murine fibroblasts. A series of fluorescent lipid probe molecules or a fluorescent cholesterol analogue, dehydroergosterol, were then incorporated into the caveolae/raft domains to show that: (i) fluorescence polarization of the multiple probe molecules {diphenylhexatriene analogues, DiI18 (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate), parinaric acids and NBD-stearic acid {12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-octadecanoic acid} indicated that acyl chains in caveolae/raft domains were significantly less ‘fluid’ (i.e. more rigid) and the transbilayer ‘fluidity gradient’ was 4.4-fold greater than in plasma membranes; (ii) although sterol was more ordered in caveolae/raft domains than plasma membranes, spontaneous sterol transfer from caveolae/raft domains was faster (initial rate, 32%; half-time, t1/2, 57%) than from the plasma membrane; (iii) although kinetic analysis showed similar proportions of exchangeable and non-exchangeable sterol pools in caveolae/raft domains and plasma membranes, addition of SCP-2 (sterol carrier protein-2) 1.3-fold more selectively increased sterol transfer from caveolae/raft domains by decreasing the t1/2 (50%) and increasing the initial rate (5-fold); (iv) SCP-2 was also 2-fold more selective in decreasing the amount of non-exchangeable sterol in caveolae/raft domains compared with plasma membranes, such that nearly 80% of caveolar/raft sterol became exchangeable. In summary, although caveolae/raft lipids were less fluid than those of plasma membranes, sterol domains in caveolae/rafts were more spontaneously exchangeable and more affected by SCP-2 than those of the bulk plasma membranes. Thus caveolae/raft domains isolated without the use of detergents display unique structure, cholesterol domain kinetics and responsiveness to SCP-2 as compared with the parent plasma membrane.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference63 articles.

1. Lipoprotein receptors and the control of plasma LDL cholesterol levels;Goldstein;Eur. J. Biochem.,1992

2. Scavenger Receptors, Caveolae, Caveolin, and Cholesterol Trafficking

3. The caveolae membrane system;Anderson;Annu. Rev. Biochem.,1998

4. High density lipoprotein mediated cholesterol uptake and targeting to lipid droplets in intact L-cell fibroblasts;Frolov;J. Biol. Chem.,2000

5. Sterol carrier protein-2 alters HDL-mediated cholesterol efflux;Atshaves;J. Biol. Chem.,2000

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3