The detection and characterization by electron-paramagnetic-resonance spectroscopy of iron–sulphur proteins and other electron-transport components in chromatophores from the purple bacterium Chromatium

Author:

Evans Michael C. W.1,Lord Anne V.1,Reeves Stuart G.1

Affiliation:

1. Department of Plant Sciences, University of London King's College, 68 Half Moon Lane, London SE24 9JF, U.K.

Abstract

Low-temperature e.p.r. (electron-paramagnetic-resonance) spectroscopy was used to detect electron-transport components in Chromatium chromatophores with e.p.r. signals in the g=2.00 region. High-potential iron protein (Em8.0=+325mV, where Em8.0 is the midpoint potential at pH8) and a second component (g=1.90, Em8.0=+285mV) are oxidized in illuminated chromatophores. Two iron–sulphur proteins (g=1.94) with Em8.0=−290mV and Em8.0=−50mV are present. One (Em8.0=−50mV) is reduced on illumination. A component (g=1.82) with Em8.0=−135mV is photoreduced at 10°K. The midpoint potential of this component is altered by o-phenanthroline and pH. The properties of this component suggest that it is the primary electron acceptor of a photochemical system. Another component (g=1.98) also has some of the properties of a primary electron acceptor, but its function cannot be completely defined. These results show that iron–sulphur proteins are present in the electron-transport system of Chromatium and indicate their role in electron transport.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3