A time to heal: microRNA and circadian dynamics in cutaneous wound repair

Author:

Fawcett Sandra12,Al Kassas Raida12,M Dykes Iain12,Hughes Alun TL23,Ghali Fawaz24,Ross Kehinde12ORCID

Affiliation:

1. School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, United Kingdom

2. Instiute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom

3. School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom

4. School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom

Abstract

Abstract Many biological systems have evolved circadian rhythms based on the daily cycles of daylight and darkness on Earth. Such rhythms are synchronised or entrained to 24-h cycles, predominantly by light, and disruption of the normal circadian rhythms has been linked to elevation of multiple health risks. The skin serves as a protective barrier to prevent microbial infection and maintain homoeostasis of the underlying tissue and the whole organism. However, in chronic non-healing wounds such as diabetic foot ulcers (DFUs), pressure sores, venous and arterial ulcers, a variety of factors conspire to prevent wound repair. On the other hand, keloids and hypertrophic scars arise from overactive repair mechanisms that fail to cease in a timely fashion, leading to excessive production of extracellular matrix (ECM) components such as such as collagen. Recent years have seen huge increases in our understanding of the functions of microRNAs (miRNAs) in wound repair. Concomitantly, there has been growing recognition of miRNA roles in circadian processes, either as regulators or targets of clock activity or direct responders to external circadian stimuli. In addition, miRNAs are now known to function as intercellular signalling mediators through extracellular vesicles (EVs). In this review, we explore the intersection of mechanisms by which circadian and miRNA responses interact with each other in relation to wound repair in the skin, using keratinocytes, macrophages and fibroblasts as exemplars. We highlight areas for further investigation to support the development of translational insights to support circadian medicine in the context of these cells.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3