Promoting mitochondrial fusion in doxorubicin-induced cardiotoxicity: a novel therapeutic target for cardioprotection

Author:

Maneechote Chayodom12,Khuanjing Thawatchai123,Ongnok Benjamin123,Arinno Apiwan123,Prathumsap Nanthip123,Chunchai Titikorn12,Arunsak Busarin12,Nawara Wichwara12,Chattipakorn Siriporn C.124ORCID,Chattipakorn Nipon123ORCID

Affiliation:

1. 1Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

2. 2Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand

3. 3Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

4. 4Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Abstract Changes in mitochondrial dynamics have been recognized as being one of the mechanisms related to cardiotoxicity following a high cumulative dose of doxorubicin (DOX). A mitochondrial division inhibitor-1 (Mdivi-1) and fusion promoter (M1) have been shown to be cardioprotective in a variety of cardiovascular settings, however, their anticardiotoxic efficacy against DOX therapy remains unclear. We therefore investigated whether treatment with Mdivi-1 and M1 protects the heart against DOX-induced cardiotoxicity via mitochondria-targeted pathways. Male Wistar rats (n=40) received DOX (3 mg/kg, six doses, n=32) or 3% dimethylsulfoxide (DMSO) in the normal saline solution (NSS) (n=8) as a control. DOX-injected rats were given one of four treatments beginning with the first DOX injection via intraperitoneal injection: 1) 3% DMSO in NSS (n=8), 2) Mdivi-1 (1.2 mg/kg per day, n=8), 3) M1 (2 mg/kg per day, n=8), and 4) Mdivi-1+M1 (n=8) for 30 days. Cardiac function, mitochondrial function, oxidative stress, myocardial injury, and protein expression associated with inflammation, autophagy, mitophagy, apoptosis, and mitochondrial dynamics were determined. DOX caused a significant deterioration in mitochondrial function and dynamic regulation, and an increase in markers of oxidative stress, inflammation, myocardial injury, apoptosis, autophagy, and mitophagy, resulting in impaired cardiac function. Cotreatment of DOX with Mdivi-1, M1, or a combination of the two mitigated these detrimental effects of DOX. These findings imply that either inhibiting fission or promoting fusion of mitochondria protects the heart from DOX-induced myocardial damage. Modulation of mitochondrial dynamics could be a novel therapeutic target in alleviating DOX-induced cytotoxic effects without compromising its anticancer efficacy.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3