Plant ribulosamine/erythrulosamine 3-kinase, a putative protein-repair enzyme

Author:

FORTPIED Juliette1,GEMAYEL Rita1,STROOBANT Vincent2,van SCHAFTINGEN Emile1

Affiliation:

1. Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology and Université Catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium

2. Ludwig Institute for Cancer Research, Avenue Hippocrate 74, B-1200 Brussels, Belgium

Abstract

FN3K (fructosamine 3-kinase) is a mammalian enzyme that catalyses the phosphorylation of fructosamines, which thereby becomes unstable and detaches from proteins. The homologous mammalian enzyme, FN3K-RP (FN3K-related protein), does not phosphorylate fructosamines but ribulosamines, which are probably formed through a spontaneous reaction of amines with ribose 5-phosphate, an intermediate of the pentose–phosphate pathway and the Calvin cycle. We show in the present study that spinach leaf extracts display a substantial ribulosamine kinase activity (approx. 700 times higher than the specific activity of FN3K in erythrocytes). The ribulosamine kinase was purified approx. 400 times and shown to phosphorylate ribulose-ε-lysine, protein-bound ribulosamines and also, with higher affinity, erythrulose-ε-lysine and protein-bound erythrulosamines. Evidence is presented for the fact that the third carbon of the sugar portion is phosphorylated by this enzyme and that this leads to the formation of unstable compounds decomposing with half-lives of approx. 30 min at 37 °C (ribulosamine 3-phosphates) and 5 min at 30 °C (erythrulosamine 3-phosphates). This decomposition results in the formation of a 2-oxo-3-deoxyaldose and inorganic phosphate, with regeneration of the free amino group. The Arabidopsis thaliana homologue of FN3K/FN3K-RP was overexpressed in Escherichia coli and shown to have properties similar to those of the enzyme purified from spinach leaves. These results indicate that the plant FN3K/FN3K-RP homologue, which appears to be targeted to the chloroplast in many species, is a ribulosamine/erythrulosamine 3-kinase. This enzyme may participate in a protein deglycation process removing Amadori products derived from ribose 5-phosphate and erythrose 4-phosphate, two Calvin cycle intermediates that are potent glycating agents.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference26 articles.

1. Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase;Delpierre;Diabetes,2000

2. Human fructosamine-3-kinase: purification, sequencing, substrate specificity, and evidence of activity in vivo;Szwergold;Diabetes,2001

3. The Amadori rearrangement;Hodge;Adv. Carbohyd. Chem.,1955

4. The Amadori product on protein: structure and reactions. Prog;Baynes;Clin. Biol. Res.,1989

5. Fructosamine 3-kinase is involved in an intracellular deglycation pathway in human erythrocytes;Delpierre;Biochem. J.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3