Switching genes on and off in haemopoiesis

Author:

Garrick David1,De Gobbi Marco1,Lynch Magnus1,Higgs Douglas R.1

Affiliation:

1. MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, U.K.

Abstract

At present, the molecular mechanisms by which stem cells commit to and differentiate towards specific lineages are poorly characterized, and will need to be better understood before stem cells can be exploited fully in experimental and clinical settings. Transcriptional regulation, the ability to turn genes on and off, lies at the heart of these processes of lineage commitment and specification. We have focused on fully understanding how these decisions are made at a single mammalian gene locus, the α-globin genes, which become up-regulated in a tissue- and developmental-stage specific manner during haemopoiesis. The studies summarized in the present article have revealed that complete regulation of this gene cluster involves not only activating mechanisms in expressing erythroid cells, but also repressing mechanisms, involving the Polycomb complex and histone deacetylases which are present in non-erythroid tissues. Taken together, these observations provide a well-characterized model of how gene expression is fully regulated during the transition from stem cells through lineage commitment and terminal differentiation.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3