Nutrient and hormonal regulation of pyruvate kinase gene expression

Author:

YAMADA Kazuya1,NOGUCHI Tamio2

Affiliation:

1. Department of Biochemistry, Fukui Medical University, Shimoaizuki, Matsuoka, Fukui 910-1193, Japan

2. Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

Abstract

Mammalian pyruvate kinase (PK), a key glycolytic enzyme, has two genes named PKL and PKM, which produce the L- and R-type isoenzymes by means of alternative promoters, and the M1-and M2-types by mutually exclusive alternative splicing respectively. The expression of these genes is tissue-specific and under developmental, dietary and hormonal control. The L-type isoenzyme (L-PK) gene contains multiple regulatory elements necessary for regulation in the 5´ flanking region, up to position -170. Both L-II and L-III elements are required for stimulation of L-PK gene transcription by carbohydrates such as glucose and fructose, although the L-III element is itself responsive to carbohydrates. The L-II element is also responsible for the gene regulation by polyunsaturated fatty acids. Nuclear factor-1 proteins and hepatocyte nuclear factor 4, which bind to the L-II element, may also be involved in carbohydrate and polyunsaturated fatty acid regulation of the L-PK gene respectively. However, the L-III-element-binding protein that is involved in carbohydrate regulation remains to be clarified, although involvement by an upstream stimulating factor has been proposed. Available evidence suggests that the carbohydrate signalling pathway to the L-PK gene includes a glucose metabolite, possibly glucose 6-phosphate or xylulose 5-phosphate, as well as phosphorylation and dephosphorylation mechanisms. In addition, at least five regulatory elements have been identified in the 5´ flanking region of the PKM gene up to position -279. Sp1-family proteins bind to two proximal elements, but the binding of proteins to other elements have not yet been clarified. Glucose may stimulate the transcription of the PKM gene via hexosamine derivatives. Sp1 may be involved in this regulation via its dephosphorylation, although the carbohydrate response element has not been determined precisely in the PKM gene. Thus glucose stimulates transcription of the PKM gene by the mechanism which is probably different from the L-PK gene.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3