Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes

Author:

BRÖER Stefan1,BRÖER Angelika1,SCHNEIDER Hans-Peter2,STEGEN Carola1,HALESTRAP Andrew P.3,DEITMER Joachim W.2

Affiliation:

1. Physiologisch-chemisches Institut der Eberhard-Karls-Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany

2. Abteilung für allgemeine Zoologie, FB Biologie, Universität Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany

3. Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K.

Abstract

Observations on lactate transport in brain cells and cardiac myocytes indicate the presence of a high-affinity monocarboxylate transporter. The rat monocarboxylate transporter isoform MCT2 was analysed by expression in Xenopus laevisoocytes and the results were compared with the known characteristics of lactate transport in heart and brain. Monocarboxylate transport via MCT2 was driven by the H+ gradient over the plasma membrane. Uptake of lactate strongly increased with decreasing pH, showing half-maximal stimulation at pH 7.2. A wide variety of monocarboxylates and ketone bodies, including lactate, pyruvate, β-hydroxybutyrate, acetoacetate, 2-oxoisovalerate and 2-oxoisohexanoate, were substrates of MCT2. All substrates had a high affinity for MCT2. For lactate a Km value of 0.74±0.07 mM was determined at pH 7.0. For the other substrates, Ki values between 100 μM and 1 mM were measured for inhibition of lactate transport, which is about one-tenth of the corresponding values for the ubiquitously expressed monocarboxylate transporter isoform MCT1. Monocarboxylate transport via MCT2 could be inhibited by α-cyano-4-hydroxycinnamate, anion-channel inhibitors and flavonoids. It is suggested that cells which express MCT2 preferentially use lactate and ketone bodies as energy sources.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3