Bioinformatics analysis of prognostic significance of COL10A1 in breast cancer

Author:

Zhang Mingdi1,Chen Hongliang1,Wang Maoli1,Bai Fang1,Wu Kejin1ORCID

Affiliation:

1. Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China

Abstract

Abstract Background: Collagen type X alpha 1 (COL10A1) is overexpressed in diverse tumors and displays vital roles in tumorigenesis. However, the prognostic value of COL10A1 in breast cancer remains unclear. Methods: The expression of COL10A1 was analyzed by the Oncomine database and UALCAN cancer database. The relationship between COL10A1 expression level and clinical indicators including prognostic data in breast cancer were analyzed by the Kaplan–Meier Plotter, PrognoScan, and Breast Cancer Gene-Expression Miner (bc-GenExMiner) databases. Results: COL10A1 was up-regulated in different subtypes of breast cancer. Estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2) status and nodal status were positively correlated with COL10A1 expression. Conversely, age, the Scarff–Bloom–Richardson (SBR) grade, basal-like status, and triple-negative status were negatively related to COL10A1 level in breast cancer samples compared with normal tissues. Patients with increased COL10A1 expression level showed worse overall survival (OS), relapse-free survival (RFS), distant metastasis-free survival (DMFS) and disease-free survival (DFS). COL10A1 was positively correlated with metastatic relapse-free survival. GSEA analysis revealed that enrichment of TGF-β signaling pathway. 15-leucine-rich repeat containing membrane protein (LRRC15) is a correlated gene of COL10A1. Conclusion: Bioinformatics analysis revealed that COL10A1 might be considered as a predictive biomarker for prognosis of breast cancer. Further experiments and clinical trials are essential to elucidate the value of COL10A1 in breast cancer treatment.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3