A comparison of nitrophenyl esters and lactones as substrates of cytosolic aldehyde dehydrogenase

Author:

KITSON Trevor M.1,KITSON Kathryn E.1

Affiliation:

1. Department of Chemistry and Biochemistry, Massey University, Palmerston North, New Zealand

Abstract

1. p-Nitrophenyl (PNP) acetate and propionate show a burst of p-nitrophenoxide release when their hydrolysis is catalysed by sheep liver cytosolic aldehyde dehydrogenase. This is not seen in the presence of NAD+ or NADH, implying a change in rate-determining step. 2. 6-Nitrodihydrocoumarin (6-NDC) shows no burst of absorbance in the visible region. We propose that the pKa of the transient ‘reporter group’ produced during the hydrolysis of this lactone is high (approx. 10) and that the incipient covalently linked p-nitrophenoxide moiety is protonated immediately on formation. The small burst seen in the hydrolysis of 5-nitro-2-coumaranone (5-NC) suggests that the pKa of its reporter group is about 8.5. 3. NADH markedly enhances the steady-state rate with the lactones. 5-NC shows a large rapid burst of colour development in the presence of NADH; this implies that NADH decreases the pKa of the reporter group to 7–7.5. 4. In the presence of NAD+, 5-NC and 6-NDC give an unusual ‘negative burst’ in the stopped-flow traces. We propose that, under these circumstances, acylation of the enzyme is extremely fast and that the first event seen in the stopped-flow traces is protonation of the reporter group. NAD+ also greatly increases the steady-state rate. 5. With the lactones in the presence of NADH, the kcat value (nearly 6 s-1), a measure of the deacylation rate, is compatible with the single-site model for dehydrogenase and esterase activities.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3