G-protein-coupled-receptor kinases mediate TNFα-induced NF-κB signalling via direct interaction with and phosphorylation of IκBα

Author:

Patial Sonika12,Luo Jiansong3,Porter Katie J.12,Benovic Jeffrey L.3,Parameswaran Narayanan12

Affiliation:

1. Department of Physiology and Division of Pathology, Michigan State University, East Lansing, MI 48824, U.S.A.

2. Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, U.S.A.

3. Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, U.S.A.

Abstract

TNFα (tumour necrosis factor α) is a multifunctional cytokine involved in the pathophysiology of many chronic inflammatory diseases. TNFα activation of the NF-κB (nuclear factor κB) signalling pathway particularly in macrophages has been implicated in many diseases. We demonstrate in the present study that GRK2 and GRK5 (G-protein-coupled-receptor kinases 2 and 5) regulate TNFα-induced NF-κB signalling in Raw 264.7 macrophages. RNAi (RNA interference) knockdown of GRK2 or GRK5 in macrophages significantly inhibited TNFα-induced IκBα (inhibitory κBα) phosphorylation and degradation, NF-κB activation and expression of the NF-κB-regulated gene MIP1β (macrophage inflammatory protein 1β). Consistent with these results, overexpression of GRK2 or GRK5 enhanced TNFα-induced NF-κB activity. In addition, we show that GRK2 and GRK5 interacted with IκBα via the N-terminal domain of IκBα and that IκBα is a substrate for GRK2 and GRK5 in vitro. Furthermore, we also found that GRK5, but not GRK2, phosphorylated IκBα at the same amino acid residues (Ser32/Ser36) as that of IKKβ (IκB kinase β). Interestingly, associated with these results, knockdown of IKKβ in Raw 264.7 macrophages did not affect TNFα-induced IκBα phosphorylation. Taken together, these results demonstrate that both GRK2 and GRK5 are important and novel mediators of a non-traditional IκBα/NF-κB signalling pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3