Voltage- and NADPH-dependence of electron currents generated by the phagocytic NADPH oxidase

Author:

PETHEŐ Gábor L.1,DEMAUREX Nicolas1

Affiliation:

1. Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland

Abstract

The phagocytic NADPH oxidase generates superoxide by transferring electrons from cytosolic NADPH to extracellular O2. The activity of the oxidase at the plasma membrane can be measured as electron current (Ie), and the voltage dependence of Ie was recently reported to exhibit a strong rectification in human eosinophils, with the currents being nearly voltage independent at negative potentials. To investigate the underlying mechanism, we performed voltage-clamp experiments on inside-out patches from human eosinophils activated with PMA. Electron current was evoked by bath application of different concentrations of NADPH, whereas slow voltage ramps (0.8 mV/ms), ranging from −120 to 200 mV, were applied to obtain ‘steady-state’ current–voltage relationships (I–V). The amplitude of Ie recorded at −40 mV was minimal at 8 μM NADPH and saturated above 1 mM, with half-maximal activity (Km) observed at approx. 110 μM NADPH. Comparison of I–V values obtained at different NADPH concentrations revealed that the voltage-dependence of Ie is strongly influenced by the substrate concentration. Above 0.1 mM NADPH, Ie was markedly voltage-dependent and steeply decreased with depolarization within the physiological membrane potential range (−60 to 60 mV), the I–V curve strongly rectifying only below −100 mV. At lower NADPH concentrations the I–V curve was progressively shifted to more positive potentials and Ie became voltage-independent also within the physiological range. Consequently, the Km of the oxidase decreased by approx. 40% (from 100 to 60 μM) when the membrane potential increased from −60 to 60 mV. We concluded that the oxidase activity depends on both membrane potential and [NADPH], and that the shape of the Ie–V curve is influenced by the concentration of NADPH in the submillimolar range. The surprising voltage-independence of Ie reported in whole-cell perforated patch recordings was most likely due to substrate limitation and is not an intrinsic property of the oxidase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference26 articles.

1. Phagocytes and oxidative stress;Babior;Am. J. Med.,2000

2. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism;Vignais;Cell Mol. Life Sci.,2002

3. Chronic granulomatous disease;Goldblatt;Clin. Exp. Immunol.,2000

4. Chronic granulomatous disease: more than the lack of superoxide?;Geiszt;J. Leukoc. Biol.,2001

5. Killing activity of neutrophils is mediated through activation of proteases by K+ flux;Reeves;Nature (London),2002

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3