Soluble C3 proconvertase and convertase of the classical pathway of human complement. Conditions of stabilization in vitro

Author:

Villiers M B,Thielens N M,Colomb M G

Abstract

Soluble classical-pathway C3 convertase and proconvertase were prepared from purified C4b-C2ox complex in the presence of Ni2+; the two complexes, stable for at least 15 h at 4 degrees C, were isolated by sucrose-density-gradient ultracentrifugation. The C3 convertase alone was able to cleave C3, and its decay was accelerated in the presence of C4-binding protein. The individual roles of Ni2+ and I2 treatment of C2 in the stabilization of the complexes seemed to be different and additive. 63Ni2+ binding coupled to h.p.l.c. analysis showed that 63Ni2+ bound only to the C2ox proteolytic fragment a (1 mol/mol) with a Kd of 26 microM. Competition studies between Ni2+ and Mg2+ indicated that only half of the Ni2+ bound to the C3 convertase was removed by Mg2+, whereas, in the same conditions, Ni2+ bound to C2ox proteolytic fragment a was not displaced, suggesting the presence of two sets of sites on the convertase. EDTA prevented the formation of both C3 convertase and proconvertase; EDTA had no effect on the preformed C3 convertase, whereas it dissociated the preformed proconvertase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3