Lipid metabolism by rat lung in vitro. Effect of starvation and re-feeding on utilization of [U-14C]glucose by lung slices

Author:

Scholz Richard W.1,Rhoades Rodney A.1

Affiliation:

1. Department of Veterinary Science, Laboratory for Human Performance Research and Center for Air Environment Studies, The Pennsylvania State University, University Park, Pa. 16802, U.S.A.

Abstract

1. The incorporation of [U-14C]glucose into several lipid components of lung and liver slices, and the activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ‘malic’ enzyme (EC 1.1.1.40) and NADP–isocitrate dehydrogenase (EC 1.1.1.42) of the cell cytosol were examined in normal, starved and re-fed rats. 2. Lipogenesis and the activities of these enzymes in liver were decreased markedly in rats starved for 72h. Re-feeding starved rats on a fat-free diet for 72h resulted in the well documented hyperlipogenic response in liver, particularly in its ability to convert glucose into neutral lipid, and increased activities of glucose 6-phosphate dehydrogenase, ‘malic’ enzyme and 6-phosphogluconate dehydrogenase to values approx. 700, 470 and 250% of controls respectively. 3. Approx. 70% of the total label in lung lipids was present in the phospholipid fraction. Hydrolysis of lung phospholipids revealed that lipogenesis from glucose was considerable, with approx. 40% of the total phospholipid radioactivity present in the fatty acid fraction. 4. Incorporation of glucose into total lung lipids was decreased by approx. 40% in lung slices of starved rats and was returned to control values on re-feeding. Although phospholipid synthesis from glucose was decreased in lung slices of starved rats, the decrease proportionally was greater for the fatty acid fraction (approx. 50%) as compared with the glycerol fraction (approx. 25%). 5. The activities of lung glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and NADP–isocitrate dehydrogenase were not affected by the dietary alterations. ‘Malic’ enzyme activity was not detected in lung cytosol preparations. 6. The results are discussed in relation to the surface-active lining layer (surfactant) of the lung.

Publisher

Portland Press Ltd.

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FAM13A, A Fatty Acid Oxidation Switch in Mitochondria. Friend or Foe in Chronic Obstructive Pulmonary Disease Pathogenesis?;American Journal of Respiratory Cell and Molecular Biology;2017-06

2. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells;American Journal of Respiratory Cell and Molecular Biology;2014-03-13

3. Inter-elemental correlations in liver and lung tissue of rats with alimentary adiposity (SRXRF);X-Ray Spectrometry;2012-01-23

4. Substrate Utilization by the Lung;Ciba Foundation Symposium 78 - Metabolic Activities of the Lung;2008-05-30

5. Methods for the Study of Lung Metabolism;Ciba Foundation Symposium 78 - Metabolic Activities of the Lung;2008-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3