DNA-binding characterization of a novel anti-tumour benzo[a]phenazine derivative NC-182: spectroscopic and viscometric studies

Author:

Tarui M1,Doi M1,Ishida T1,Inoue M2,Nakaike S2,Kitamura K1

Affiliation:

1. Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 2-10-65 Kawai, Matsubara, Osaka 580, Japan

2. Research Center of Taisho Pharmaceufical Co., Ltd., 1-403 Yoshino-cho, Ohmiya, Saitama 330, Japan.

Abstract

NC-182 is a novel anti-tumour compound having a benzo[a]phenazine ring. Fluorescence, absorption and c.d. spectroscopy, as well as viscometric titrations, were systematically performed to investigate the interaction mode of this drug with DNA and its effect on DNA conformation, based on comparative measurements with distamycin (DNA minor-groove binder) and daunomycin (DNA-base intercalator). NC-182 was found to be a potent intercalator of DNA, especially the B-form DNA, although no specificity was observed against the base-pair. The binding of NC-182 to B-DNA behaves biphasically, depending on the molar ratio (r) of drug to DNA: NC-182 acts to render the B-form structure rigid at relatively low r value and to promote the transformation of B- to non-B forms at high r values. It was also shown that NC-182 promotes the unwinding of Z-form DNA to B-form. Viscometric, u.v. ‘melting’ and c.d. experiments further showed that (1) the DNA duplex structure is thermally stabilized by intercalation with NC-182 and (2) the intercalation of NC-182 into a poly(dA).2poly(dT) DNA structure thermally stabilizes the triplex structure, resulting in a melting point close to that of the duplex structure; the melting curves of triplex and duplex structures coincide at r > 0.06. These observations make a significant contribution to our understanding of the biological properties of this novel benzo[a]phenazine derivative, a new anti-tumour tumour agent against multidrug-resistant and sensitive tumours.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3