Evolution of spectrin function in cytoskeletal and membrane networks

Author:

Baines Anthony J.1

Affiliation:

1. Department of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, Kent CT2 7NJ, U.K.

Abstract

Spectrin is a cytoskeletal protein thought to have descended from an α-actinin-like ancestor. It emerged during evolution of animals to promote integration of cells into tissues by assembling signalling and cell adhesion complexes, by enhancing the mechanical stability of membranes and by promoting assembly of specialized membrane domains. Spectrin functions as an (αβ[H])2 tetramer that cross-links transmembrane proteins, membrane lipids and the actin cytoskeleton, either directly or via adaptor proteins such as ankyrin and 4.1. In the present paper, I review recent findings on the origins and adaptations in this system. (i) The genome of the choanoflagellate Monosiga brevicollis encodes α-, β- and βHeavy-spectrin, indicating that spectrins evolved in the immediate unicellular precursors of animals. (ii) Ankyrin and 4.1 are not encoded in that genome, indicating that spectrin gained function during subsequent animal evolution. (iii) Protein 4.1 gained a spectrin-binding activity in the evolution of vertebrates. (iv) Interaction of chicken or mammal β-spectrin with PtdInsP2 can be regulated by differential mRNA splicing, which can eliminate the PH (pleckstrin homology) domain in βI- or βII-spectrins; in the case of mammalian βII-spectrin, the alternative C-terminal region encodes a phosphorylation site that regulates interaction with α-spectrin. (v) In mammalian evolution, the single pre-existing α-spectrin gene was duplicated, and one of the resulting pair (αI) neo-functionalized for rapid make-and-break of tetramers. I hypothesize that the elasticity of mammalian non-nucleated erythrocytes depends on the dynamic rearrangement of spectrin dimers/tetramers under the shearing forces experienced in circulation.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3