Degradation of articular cartilage keratan sulphates using hydrazinolysis and nitrous acid. Environment of fucose residues

Author:

Brown G M1,Huckerby T N2,Morris H G1,Nieduszynski I A1

Affiliation:

1. Division of Biological Sciences, Institute of Environmental and Biological Sciences, Lancaster University, Bailrigg, Lancaster LAI 4YQ, U.K.

2. School of Physics and Materials, Lancaster University, Bailrigg, Lancaster LAI 4YA, U.K.

Abstract

Alkaline borohydride-reduced keratan sulphate (KS) chains from bovine articular cartilage (6-8-year-old animals) were fragmented by an anhydrous hydrazine/nitrous acid procedure, previously used on KS by Hopwood & Elliott to isolate the major disaccharides from the poly-N-acetyl-lactosamine repeat sequence [Hopwood & Elliott (1983) Carbohydr. Res. 117, 263-274]. The resulting oligosaccharides were reduced with NaB3H4 or NaBH4 and subjected to ion-exchange chromatography on a Nucleosil 5SB column. In addition to the major disaccharides, two fucose-containing oligosaccharides were examined by high-field 1H n.m.r. spectroscopy, and shown to have the following structures (where AnManOH is 2,5-anhydro-D-mannitol): [formula: see text] It is evident that the presence of fucose protects the N-acetylglucosamine residue from de-N-acetylation, and therefore fragments are produced which preserve the immediate environment of the fucose residue. It may be of biosynthetic significance that these two oligosaccharides contain an unsulphated galactose on the non-reducing side of the fucose residue. The hydrazine/nitrous acid/NaB3H4 method followed by h.p.l.c. provides a sensitive fingerprinting technique for the assay of KS composition and sub-populations.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3