Identification and function of type-2 and type-3 ryanodine receptors in gut epithelial cells

Author:

VERMA Vandana1,CARTER Christine2,KEABLE Susan2,BENNETT Deborah3,THORN Peter1

Affiliation:

1. Department of Pharmacology, Tennis Court Road, Cambridge University, Cambridge CB2 1QJ

2. The Babraham Institute, Babraham, Cambridge CB2 4AT

3. Laboratory of Molecular Signalling, Department of Zoology, Downing Street, Cambridge University, Cambridge CB2 3EJ, U.K.

Abstract

Reverse transcription-PCR (RT-PCR) techniques were used to identify the expression of ryanodine receptor (RyR) isoforms in gut epithelial cells. Restriction digest and sequence analysis of the PCR product showed the presence of RyR 2 and RyR 3. [3H]Ry binding studies on a microsome preparation, in a high-salt buffer, showed specific binding with an EC50 of 15 µM. In order to determine a potential functional role for these RyRs, we first characterized the response of the cells to acetylcholine. At all concentrations used acetylcholine induced sinusoidal cytosolic Ca2+ concentration ([Ca2+]i) oscillations. In response to 10-4 M acetylcholine, levels of inositol 1,4,5-trisphosphate (InsP3) showed a peak of six times the basal level, at 30 s after stimulation. Application of caffeine alone failed to elicit a rise in cytosolic Ca2+. However, caffeine (5–50 mM) did rapidly and reversibly inhibit the acetylcholine-induced [Ca2+]i oscillations. The effects of Ry were more complex. Applied alone, Ry had no effect on the [Ca2+]i signal. When applied during agonist-evoked [Ca2+]i oscillations, Ry (10 µM) slowly blocked the response. In the continuous presence of Ry (10 µM) a short application of acetylcholine elicited a [Ca2+]i response that continued as oscillations even when the agonist was removed. The oscillations, in the presence of Ry (10 µM) but absence of agonist, were blocked either by removal of extracellular Ca2+ or by an application of a higher concentration of Ry (100 µM). These effects are consistent with the known use-dependence and dose-dependence for Ry action at the RyR. We conclude that the RyR 2 and RyR 3, identified by RT-PCR, play a central role in [Ca2+]i oscillations in gut epithelial cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3