Redox state and lactate accumulation in human skeletal muscle during dynamic exercise

Author:

Sahlin K1,Katz A1,Henriksson J1

Affiliation:

1. Department of Clinical Physiology, Karolinska Institute, Huddinge Hospital, Sweden.

Abstract

The relationship between the redox state and lactate accumulation in contracting human skeletal muscle was investigated. Ten men performed bicycle exercise for 10 min at 40 and 75% of maximal oxygen uptake [VO2(max.)], and to fatigue (4.8 +/- 0.6 min; mean +/- S.E.M.) at 100% VO2(max.). Biopsies from the quadriceps femoris muscle were analysed for NADH, high-energy phosphates and glycolytic intermediates. Muscle NADH was 0.20 +/- 0.02 mmol/kg dry wt. of muscle at rest, and decreased to 0.12 +/- 0.01 (P less than 0.01) after exercise at 40% VO2(max.), but no change occurred in the [lactate]/[pyruvate] ratio. These data, together with previous results on isolated cyanide-poisoned soleus muscle, where NADH increased while [lactate]/[pyruvate] ratio was unchanged [Sahlin & Katz (1986) Biochem. J. 239, 245-248], suggest that the observed changes in muscle NADH occurred within the mitochondria. After exercise at 75 and 100% VO2(max.), muscle NADH increased above the value at rest to 0.27 +/- 0.03 (P less than 0.05) and 0.32 +/- 0.04 (P less than 0.001) mmol/kg respectively. Muscle lactate was unchanged after exercise at 40% VO2(max.), but increased substantially at the higher work loads. At 40% VO2(max.), phosphocreatine decreased by 11% compared with the values at rest, and decreased further at the higher work loads. The decrease in phosphocreatine reflects increased ADP and Pi. It is concluded that muscle NADH decreases during low-intensity exercise, but increases above the value at rest during high-intensity exercise. The increase in muscle NADH is consistent with the hypothesis that the accelerated lactate production during submaximal exercise is due to a limited availability of O2 in the contracting muscle. It is suggested that the increases in NADH, ADP and Pi are metabolic adaptations, which primarily serve to activate the aerobic ATP production, and that the increased anaerobic energy production (phosphocreatine breakdown and lactate formation) is a consequence of these changes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3