Affiliation:
1. Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
Abstract
The unicellular red alga Galdieria sulphuraria is a facultative heterotrophic member of the Cyanidiaceae, a group of evolutionary highly conserved extremophilic red algae. Uptake of various sugars and polyols is accomplished by a large number of distinct plasma membrane transporters. We have cloned three transporters [GsSPT1 (G. sulphuraria sugar and polyol transporter 1), GsSPT2 and GsSPT4], followed their transcriptional regulation and assayed their transport capacities in the heterologous yeast system. SPT1 is a conserved type of sugar/H+ symporter with 12 predicted transmembrane-spanning domains, whereas SPT2 and SPT4 represent monosaccharide transporters, characterized by only nine hydrophobic domains. Surprisingly, all three proteins are functional plasma membrane transporters, as demonstrated by genetic complementation of a sugar uptake-deficient yeast mutant. Substrate specificities were broad and largely redundant, except for glucose, which was only taken up by SPT1. Comparison of SPT1 and truncated SPT1(Δ1–3) indicated that the N-terminus of the protein is not required for sugar transport or substrate recognition. However, its deletion affected substrate affinity as well as maximal transport velocity and released the pH dependency of sugar uptake. In line with these results, uptake by SPT2 and SPT4 was active but not pH-dependent, making a H+ symport mechanism unlikely for the truncated proteins. We postulate SPT2 and SPT4 as functional plasma membrane transporters in G. sulphuraria. Most likely, they originated from genes encoding active monosaccharide/H+ symporters with 12 transmembrane-spanning domains.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献