Contrasting effects of the protein kinase C inhibitor, staurosporine, on cytokine and phorbol ester stimulation of fructose 2,6-bisphosphate and prostaglandin E production by fibroblasts in vitro. Comparative studies using interleukin-1α, tumour necrosis factor α, transforming growth factor β, interferon-γ and 12-O-tetradecanoylphorbol 13-acetate

Author:

Taylor D J1,Evanson J M1,Woolley D E1

Affiliation:

1. University Department of Medicine, University Hospital of South Manchester, West Didsbury, Manchester M20 8LR, U.K.

Abstract

It is known that both interleukin-1 alpha (IL-1 alpha) and 12-O-tetradecanoylphorbol 13-acetate (TPA) promote increases in intracellular levels of the glycolytic regulatory metabolite fructose 2,6-bisphosphate [Fru(2,6)P2] and in the production of prostaglandin E (PGE) by subcultured rheumatoid synovial cells (RSC) and human dermal fibroblasts in vitro. We report here that the protein kinase C inhibitor staurosporine enhanced the IL-1 alpha-induced increase in [Fru(2,6)P2] and PGE production by RSC, whereas in similar concentrations (3-30 nM) this inhibitor decreased the TPA-induced stimulation of these parameters. Staurosporine produced a similar enhancement of the response to IL-1 alpha by normal human dermal fibroblasts. The increased PGE production provoked by tumour necrosis factor alpha (TNF alpha) in RSC was also augmented by staurosporine, but, in contrast, the increases in cellular [Fru(2,6)P2] induced by transforming growth factor beta (TGF beta) and interferon-gamma (IFN-gamma) were diminished. Thus the protein kinase C inhibitor staurosporine discriminates not only between the effects produced by IL-1 alpha and TPA, but also between those of IL-1 alpha and two other cytokines (but not between IL-1 alpha and TNF alpha). These findings suggest that IL-1 alpha and probably TNF alpha act via an intracellular mechanism different from that mediating the action of TPA, TGF-beta and IFN-gamma, and provide evidence that staurosporine is capable of amplifying the IL-1 signal.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3