Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis

Author:

van Berkel P H C1,Geerts M E J2,van Veen H A2,Kooiman P M2,Pieper F R2,de Boer H A1,Nuijens J H2

Affiliation:

1. Leiden Institute of Chemistry, Medical Biotechnology Department, Gorlaeus Laboratories, Leiden University, The Netherlands.

2. Gene Pharming Europe BV, Leiden, The Netherlands

Abstract

We studied the role of N-glycosylation of human lactoferrin (hLF) with respect to properties that are relevant to its antibacterial and anti-inflammatory activities. A human kidney-derived 293(S) cell line that constitutively expresses recombinant hLF (rhLF) was produced. The reactivity towards various antibodies of rhLF that had been expressed in the absence or presence of tunicamycin (which blocks N-linked glycosylation) did not differ from that of natural (human milk-derived) hLF. Cation-exchange chromatography and N-terminal protein sequencing showed identical cationic properties and an intact N-terminal sequence for rhLF and natural hLF. SDS/PAGE of rhLF expressed in the presence of tunicamycin revealed a protein with the same M(r) as that of enzymically deglycosylated natural hLF. Both glycosylated and unglycosylated rhLF appeared to be completely saturated with iron. The affinity of natural hLF, glycosylated and non-glycosylated rhLF for both human lysozyme (Kd 4.5 x 10(-8) M) and bacterial lipopolysaccharide did not differ. SDS/PAGE of hLF species subjected to trypsin indicated that unglycosylated rhLF was much more susceptible to degradation. Furthermore, this analysis suggests that N-glycosylation heterogeneity in natural hLF and rhLF resides in the C-lobe. Thus our results provide no argument for differential antibacterial and/or anti-inflammatory activity of natural and (glycosylated) rhLF and suggest that a major function of glycosylation in hLF is to protect it against proteolysis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3