miR-152/TNS1 axis inhibits non-small cell lung cancer progression through Akt/mTOR/RhoA pathway

Author:

Duan Jinjin1,Wang Li1,Shang Liqun1,Yang Shumei1,Wu Hua1,Huang Yongcheng2,Miao Yi1ORCID

Affiliation:

1. Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China

2. Department of Pathology, Xi’an Central Hospital, Xi’an, Shaanxi 7100033, P.R. China

Abstract

Abstract Aim: The purpose of the present study was to explore the function and mechanism of tensin 1 (TNS1) in non-small cell lung cancer (NSCLC) progression. Methods: The expression of TNS1 in NSCLC cells and tissues was assessed by RT-PCR and Western blot. Besides, Kaplan–Meier survival analysis was recruited to explore the association between TNS1 and NSCLC. Cell growth was analyzed by MTT and flow cytometry assay, while cell metastasis was determined by wound healing and transwell assays. The targeting relationship between TNS1 and miR-152 was assessed by luciferase activity assays. And Western blot was employed to determine the expression of related proteins of Akt/mTOR/RhoA pathway. Results: TNS1 level was boosted in NSCLC cells and tissues, related to the prognosis of NSCLC patients. Furthermore, it was proved that TNS1 promoted the growth and metastasis of NSCLC cells via Akt/mTOR/RhoA pathway. And miR-152 targeted TNS1 to affect the progression of NSCLC. Conclusion: miR-152/TNS1 axis inhibits the progression of NSCLC by Akt/mTOR/RhoA pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3