Expression of reduced amounts of structurally altered aggrecan in articular cartilage chondrocytes exposed to high hydrostatic pressure

Author:

Lammi M J1,Inkinen R1,Parkkinen J J2,Häkkinen T1,Jortikka M1,Nelimarkka L O3,Järveläinen H T3,Tammi M I1

Affiliation:

1. Departments of Anatomy, P.O. Box 1627, FIN-70211 Kuopio, Finland

2. Pathology, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland

3. Department of Medical Biochemistry, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland

Abstract

The effect of hydrostatic pressure on proteoglycan (PG) metabolism of chondrocyte cultures was examined using a specially designed test chamber. Primary cultures of bovine articular chondrocytes at confluence were exposed for 20 h to 5 and 30 MPa continuous hydrostatic pressures and 5 MPa hydrostatic pulses (0.017, 0.25 and 0.5 Hz) in the presence of [35S]sulphate. Northern blot analyses showed that chondrocyte cultures used in this study expressed abundant mRNA transcripts of aggrecan, typical of chondrocytes, but not versican. The cultures also expressed biglycan and decorin. Enzymic digestions with keratanase and chondroitinases AC, ABC and B and subsequent SDS/agarose gel electrophoresis confirmed the synthesis of aggrecans and small dermatan sulphate PGs. The continuous 30 MPa pressure reduced total PG synthesis by 37% as measured by [35S]sulphate incorporation, in contrast to the 5 MPa continuous pressure which had no effect. The high static pressure also reduced total [3H]glucosamine incorporation by 63% and total [14C]leucine incorporation by 57%. The cyclic pressures showed a frequency-dependent stimulation (0.5 Hz, 11%) or inhibition (0.017 Hz, -17%) of [35S]sulphate incorporation. Aggrecans secreted under continuous 30 MPa pressure showed a retarded migration in 0.75% SDS/agarose gel electrophoresis and they also eluted earlier on Sephacryl S-1000 gel filtration, indicative of a larger molecular size. The increased size was consistent with an increase of average glycosaminoglycan chain length as determined by Sephacryl S-300 gel filtration. No change in aggrecan size was observed with the lower (5 MPa) static or cyclic pressures. Continuous 30 MPa hydrostatic pressure slightly reduced the steady-state mRNA level of aggrecan, in parallel with the decline in PG synthesis measured by [35S]sulphate incorporation. The results demonstrated that high hydrostatic pressure could influence the synthesis of PGs, especially of aggrecans, in chondrocytes both at the transcriptional and translational/post-translational levels.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3