Comparative studies on the 5-aminolaevulinic acid dehydratases from Pisum sativum, Escherichia coli and Saccharomyces cerevisiae

Author:

M. SENIOR Natalie1,BROCKLEHURST Keith2,COOPER Jon B.3,WOOD Stephen P.3,ERSKINE Peter3,SHOOLINGIN-JORDAN Peter M.4,THOMAS Paul G.5,WARREN Martin J.1

Affiliation:

1. Department of Molecular Genetics, Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, U.K.

2. Department of Biochemistry, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, U.K.

3. Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, U.K.

4. Department of Biochemistry, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, U.K.

5. Zeneca Agrochemicals, Jealott's Hill Research Station, Bracknell, Berkshire RG12 6EY, U.K.

Abstract

5-Aminolaevulinic acid dehydratase (ALAD) is an essential enzyme in most organisms, catalysing an inaugural step in the tetrapyrrole biosynthetic pathway, the Knorr-type condensation reaction of two molecules of 5-aminolaevulinic acid (ALA) to form the monopyrrole porphobilinogen. ALADs can be conveniently separated into two main groups: those requiring Zn2+ for activity (typified here by the enzymes from Escherichia coli and Saccharomyces cerevisiae, yeast) and those requiring Mg2+ (represented here by the enzyme from Pisum sativum, pea). Here we describe a detailed comparison of these two metal-dependent systems. Kinetically influential ionizations were identified by using pH-dependent kinetics. Groups with pKa values of approx. 7 and 10 (assigned to cysteine and lysine residues) were detected in the free enzyme and enzyme–substrate states of all three enzymes, and a further ionizable group with a pKa of approx. 8.5 (assigned to histidine) was found to be additionally important to the yeast enzyme. The importance of these residues was confirmed by using protein modifying reagents. Shifts in the pKa values of the pea and E. coli enzymes consequent on E–S complex formation suggest a change to a less hydrophobic microenvironment when substrate binds. Studies with inhibitors revealed that the three enzymes exhibit differential susceptibilities and, in the case of succinylacetone, this is reflected in Ki values that vary by three orders of magnitude. In addition, the crystallization of the yeast ALAD is described, raising the possibility of an X-ray-derived three-dimensional structure of this enzyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3