Molecular characterization of quail apolipoprotein very-low-density lipoprotein II: disulphide-bond-mediated dimerization is not essential for inhibition of lipoprotein lipase

Author:

MacLACHLAN Ian1,STEYRER Ernst2,HERMETTER Albin3,NIMPF Johannes1,SCHNEIDER Wolfgang J.1

Affiliation:

1. Department of Molecular Genetics, Biocenter and University of Vienna, Dr. Bohr Gasse 9/II, A-1030 Austria

2. Department of Medical Biochemistry, University of Graz, Harrach Gasse 21, A-8010 Graz, Austria

3. Department of Biochemistry and Food Chemistry, Technische Universität Graz, Petersgasse 12, A-8010 Graz, Austria

Abstract

As part of the avian reproductive effort, large quantities of triglyceride-rich very-low-density lipoprotein (VLDL) particles are transported by receptor-mediated endocytosis into the female germ cells. Although the oocytes are surrounded by a layer of granulosa cells harbouring high levels of active lipoprotein lipase, non-lipolysed VLDL is transported into the yolk. This is because VLDL particles from laying chickens are protected from lipolysis by apolipoprotein (apo)-VLDL-II, a potent dimeric lipoprotein lipase inhibitor [Schneider, Carroll, Severson and Nimpf (1990) J. Lipid Res. 31, 507–513]. To determine whether this protection depends on dimer formation and constitutes a general mechanism to ensure high levels of yolk triglycerides for embryonic utilization in birds, we have now molecularly characterized apo-VLDL-II in the Japanese quail, a frequently used avian species. Quail apo-VLDL-II shows 72% amino acid identity with the chicken protein, with most replacements being in the C-terminal region. Importantly, quail apo-VLDL-II lacks the single cysteine residue present eight residues from the C-terminus of chicken apo-VLDL-II, which is responsible for dimerization of the chicken lipoprotein lipase inhibitor. Nevertheless, monomeric quail and dimeric chicken apo-VLDL-II display, on a molar basis, identical inhibitory effects on lipoprotein lipase, underscoring the biological importance of their function. Furthermore secondary structure prediction of the 3´-untranslated region of the quail message supports a role for loop structures in the strictly oestrogen-dependent production of the lipoprotein lipase inhibitors. Our findings shed new light on the essential role of this small, hormonally regulated, protein in avian reproduction.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3