Liver cell volume and protein synthesis

Author:

Stoll B1,Gerok W1,Lang F2,Häussinger D1

Affiliation:

1. Medizinische Universitätsklinik, Hugstetterstrasse 55, D-7800 Freiburg, Federal Republic of Germany.

2. Physiologisches Institut der Universität, Fritz Pregl Strasse 3, A-6010 Innsbruck, Austria

Abstract

Protein synthesis in isolated rat hepatocytes was determined from the incorporation of [3H]leucine (4 mM) into acid-precipitable material in the presence of amino acids at twice their physiological concentration. Protein synthesis increased linearly with time and incubated cell protein, and was inhibited by cycloheximide by more than 95%. In normo-osmotic incubations containing amino acids at twice the physiological concentration the rate of [3H]leucine incorporation was 5.8 +/- 0.2 nmol/h per mg of cell protein (n = 26). Hyperosmotic cell shrinkage due to addition of 60 mM-NaCl or 120 mM-raffinose inhibited [3H]leucine incorporation into acid-precipitable material by 60 and 74% respectively, whereas hypo-osmotic cell swelling was ineffective. Inhibition of protein synthesis by adding 120 mM-raffinose was largely counteracted by simultaneous lowering of the NaCl concentration by 60 mM. Glutamine (10 mM) had no effect on protein synthesis in normo-osmotic incubations (320 mosM), but stimulated protein synthesis in hyperosmotically (440 mosM) pre-shrunken cells almost to rates found in normo-osmotic (320 mosM) control incubations. Cyclic AMP and vasopressin inhibited protein synthesis by 23% and 8% respectively, whereas insulin and phenylephrine were ineffective. However, inhibition of protein synthesis by cyclic AMP was about twice as strong in the presence of vasopressin or phenylephrine. When protein synthesis was preinhibited by cyclic AMP, [3H]leucine incorporation was stimulated by glutamine (10 mM), insulin or hypo-osmotic exposure. There was a close relationship between the inhibition of protein synthesis and the extent of hepatocyte shrinkage induced by the above-mentioned effectors, suggesting a role of cell volume in the regulation of hepatic protein synthesis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3