Binding characteristics of scavenger receptors on liver endothelial and Kupffer cells for modified low-density lipoproteins

Author:

De Rijke Y B1,Biessen E A L1,Vogelezang C J M1,van Berkel T J C1

Affiliation:

1. Division of Biopharmaceutics, Leiden-Amsterdam Center for Drug Research (LACDR), Sylvius Laboratories, University of Leiden, P.O. Box 9503, 2300 RA Leiden, The Netherlands.

Abstract

Previous studies showed that both endothelial and Kupffer cells contain specific recognition sites of oxidized low-density lipoprotein (OxLDL), in addition to recognition sites which recognize OxLDL and acetylated LDL (AcLDL). We have determined the binding characteristics of the recognition sites for OxLDL on Kupffer cells and endothelial cells (OxLDL-specific binding-site) in comparison to the recognition site for AcLDL on endothelial cells, which recognizes both AcLDL and OxLDL (Ac/OxLDL binding site). The capacity of Kupffer cells to bind OxLDL (Bmax. = 779 ng of 125I-OxLDL/mg of cell protein; Kd = 6 micrograms/ml) was comparable to the binding-capacity of endothelial cells (Bmax. = 803 ng of 125I-OxLDL/mg of cell protein; Kd = 5 micrograms/ml). The effect of net charge of modified LDL on its affinity for the recognition sites on Kupffer and endothelial cells was evaluated using competition studies. The affinity of AcLDL for the Ac/OxLDL binding site was greatly increased from 460 micrograms/ml to 4 micrograms/ml with increasing extent of modification and thus net charge. The Ac/OxLDL binding-site on endothelial cells also displayed an increased affinity towards LDL with an increasing degree of oxidation. The affinity of OxLDL for the Ac/OxLDL binding-site appeared to be about 4-fold higher than that of AcLDL with a similar extent of modification. At higher degrees of oxidation of LDL, the affinity for the OxLDL-specific site on endothelial and Kupffer cells was also strongly enhanced; the OxLDL-specific binding-site possesses a higher affinity for mildly oxidized LDL as compared with the Ac/OxLDL binding-site. It is concluded that recognition of OxLDL by both the OxLDL-specific binding-site and the Ac/OxLDL binding-site on liver endothelial and Kupffer cells depends on the net negative charge of modified LDL. The similarity in binding pattern of these binding sites makes it likely that the newly described 95 kD OxLDL binding protein on Kupffer cells [Y. B. De Rijke and Th. J. C. van Berkel, J. Biol. Chem. (1994), 269, 824-827] contains a recognition site with similar structural elements as described earlier for scavenger receptors.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3