Synthesis and kinetic evaluation of 4-deoxymaltopentaose and 4-deoxymaltohexaose as inhibitors of muscle and potato α-glucan phosphorylases

Author:

MOSI Renee1,WITHERS Stephen G.1

Affiliation:

1. Department of Chemistry, University of British Columbia, 2036 Main Hall, Vancouver B.C., Canada VGT 1Z1

Abstract

α-Glucan phosphorylases degrade linear or branched oligosaccharides via a glycosyl transfer reaction, occurring with retention of configuration, to generate α-glucose-1-phosphate (G1P). We report here the chemoenzymic synthesis of two incompetent oligosaccharide substrate analogues, 4-deoxymaltohexaose (4DG6) and 4-deoxymaltopentaose (4DG5), for use in probing this mechanism. A kinetic analysis of the interactions of 4DG5 and 4DG6 with both muscle and potato phosphorylases was completed to provide insight into the nature of the binding mode of oligosaccharide to phosphorylase. The 4-deoxy-oligosaccharides bind competitively with maltopentaose and non-competitively with respect to orthophosphate or G1P in each case, indicating binding in the oligosaccharide binding site. Further, 4DG5 and 4DG6 were found to bind to potato and muscle phosphorylases some 10–40-fold tighter than does maltopentaose. Similar increases in affinity as a consequence of 4-deoxygenation were observed previously for the binding of polymeric glycogen analogues to rabbit muscle phosphorylase [Withers (1990) Carbohydr. Res. 196, 61–73].

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3