Phosphorylation by protein kinase C decreases catalytic activity of avian phospholipase C-β

Author:

FILTZ Theresa M.1,CUNNINGHAM Michelle L.1,STANIG Kara J.1,PATERSON Andrew1,HARDEN T. Kendall1

Affiliation:

1. Mary Ellen Jones Building, University of North Carolina School of Medicine, Department of Pharmacology, Chapel Hill, NC 27599, U.S.A.

Abstract

The potential role of protein kinase C (PKC)-promoted phosphorylation has been examined in the G-protein-regulated inositol lipid signalling pathway. Incubation of [32P]Pi-labelled turkey erythrocytes with either the P2Y1 receptor agonist 2-methylthioadenosine triphosphate (2MeSATP) or with PMA resulted in a marked increase in incorporation of 32P into the G-protein-activated phospholipase C PLC-βT. Purified PLC-βT also was phosphorylated by PKC in vitro to a stoichiometry (mean±S.E.M.) of 1.06±0.2 mol of phosphate/mol of PLC-βT. Phosphorylation by PKC was isoenzyme-specific because, under identical conditions, mammalian PLC-β2 also was phosphorylated to a stoichiometry near unity, whereas mammalian PLC-β1 was not phosphorylated by PKC. The effects of PKC-promoted phosphorylation on enzyme activity were assessed by reconstituting purified PLC-βT with turkey erythrocyte membranes devoid of endogenous PLC activity. Phosphorylation resulted in a decrease in basal activity, AlF4--stimulated activity, and activity stimulated by 2MeSATP plus guanosine 5´-[γ-thio]triphosphate in the reconstituted membranes. The decreases in enzyme activities were proportional to the extent of PKC-promoted phosphorylation. Catalytic activity assessed by using mixed detergent/phospholipid micelles also was decreased by up to 60% by phosphorylation. The effect of phosphorylation on Gqα-stimulated PLC-βT in reconstitution experiments with purified proteins was not greater than that observed on basal activity alone. Taken together, these results illustrate that PKC phosphorylates PLC-βT in vivo and to a physiologically relevant stoichiometry in vitro. Phosphorylation is accompanied by a concomitant loss of enzyme activity, reflected as a decrease in overall catalytic activity rather than as a specific modification of G-protein-regulated activity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3