Antigenic determinants of a plant proteoglycan, the Gladiolus style arabinogalactan-protein

Author:

Gleeson P A,Clarke A E

Abstract

Antiserum has been raised to the arabinogalactan-protein of Gladiolus style mucilage. This macromolecule has been characterized and has a structure consistent with a 1 leads to 3-linked beta-galactan backbone with side branches of 1 leads to 6-linked beta-galactosyl residues, some of which carry terminal alpha-L-arabinofuranoside residues [Gleeson & Clarke (1979) Biochem. J. 181, 607-621]. The specificity of the antiserum has been investigated by immunoprecipitation with [3H]arabinogalactan-protein. THe 3H label was introduced into the arabinogalactan-protein by oxidation of the terminal galactose residues with galactose oxidase, followed by reduction with NaB3H4. The antigenic specificity of the antiserum was shown to be directed towards the carbohydrate component of the arabinogalactan-protein. D-galactose and L-arabinose were the most effective hapten inhibitors of the antiserum; other monosaccharides, N-acetyl-D-galactono-1,4-lactone, D-glucose, D-mannose, L-rhamnose. L-fucose and D-xylose, were all poor inhibitors. The antiserum showed preference for beta-galactosides over alpha-galactosides. Of the haptens examined, the disaccharide 6-O-beta-D-galactopyranosyl-D-galactopyranose was the most potent inhibitor. The antigenic features of the arabinogalactan-protein were investigated by examining the interaction of the antiserum with chemically and enzymically modified arabinogalactan-protein. Also, the cross-reactivity of structurally related polysaccharides and glycoproteins with the specific antiserum was assessed by a haemagglutination assay using erythrocytes coupled with specific antiserum. The results indicate that the dominant antigenic determinants of the arabinogalactan-protein are probably the side branches of 1 leads to 6 -linked beta-galactose residues bearing the terminal alpha-L-arabinose residues.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Enzymic Cell Wall (glyco)Proteins;Annual Plant Reviews online;2018-04-19

2. Style morphology and pollen tube pathway;Plant Reproduction;2017-11-07

3. Rhinoconjunctivitis-asthma due to sensitisation to gladiolus;Allergologia et Immunopathologia;2011-03

4. News on immunologically active plant polysaccharides;Bioactive Carbohydrate Polymers;2000

5. Pollen-stigma capture is not species discriminant within the Brassicaceae family;Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie;1998-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3