Temperature- and acceptor-specificity of cell-free vesicular transfer from transitional endoplasmic reticulum to the cis Golgi apparatus

Author:

Dunkle S1,Reust T1,Nowack D D2,Waits L2,Paulik M1,Morre D M2,Morre D J1

Affiliation:

1. Department of Medicinal Chemistry, University, West Lafayette, IN 47907, U.S.A.

2. Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, U.S.A.

Abstract

The temperature dependence and specificity of transfer of membrane constituents from donor transitional endoplasmic reticulum to the cis Golgi apparatus were investigated using a cell-free system from rat liver. The radiolabelled transitional endoplasmic reticulum donors were prepared from slices of rat liver prelabelled with [14C]leucine. The acceptor Golgi apparatus elements were unlabelled and immobilized on nitrocellulose. When Golgi apparatus stacks were separated by preparative free-flow electrophoresis into subfractions enriched in cisternae derived from the cis, medial and trans portions of the stack respectively, efficient specific transfer was observed only to cis elements. Trans elements were devoid of specific acceptor capacity. Similarly, when transfer was determined as a function of temperature, a transition was observed in transfer activity between 12 degrees C and 18 degrees C similar to that seen in vivo for formation of the so-called 16 degrees C cis Golgi-located membrane compartment. Transfer at temperatures below 16 degrees C and transfer to trans Golgi apparatus compartments at temperatures either above or below 16 degrees C was similar and unspecific. The unspecific transfer at low temperature was pH independent, whereas specific transfer was greatest at the physiological pH of 7, and was reduced to 10% and 18% of that occurring at pH 8 and pH 5.5 respectively. These findings show that the cell-free system derived from rat liver exhibits a high degree of fidelity to transfer in vivo, an efficiency approaching that observed in vivo, and a nearly absolute acceptor specificity for cis Golgi apparatus. The acceptor-, temperature- and pH-specificity of the cell-free transfer, as well as the saturation kinetics exhibited with respect to acceptor Golgi apparatus, support the concept of transition-vesicle-specific docking sites of finite number associated with cis Golgi apparatus cisternae.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3