Sequential extracts of human bone show differing collagen synthetic rates

Author:

Babraj J.1,Cuthbertson D.J.1,Rickhuss P.2,Meier-Augenstein W.1,Smith K.1,Bohé J.3,Wolfe R. R.3,Gibson J. N. A.4,Adams C.4,Rennie M. J.1

Affiliation:

1. Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee DDI 4HN, Scotland, U.K.

2. Tayside University Hospital Trust, Ninewells Hospital, Dundee DDI 9SY, Scotland, U.K.

3. Shriners Burns Hospital and Department of Surgery, The University of Texas Medical Branch, Galveston, TX, U.S.A.

4. Department of Orthopaedic Surgery, Edinburgh Royal Infirmary, Edinburgh EH10 7ED, Scotland, U.K.

Abstract

Type I collagen is the major bone protein. Little is known quantitatively about human bone collagen synthesis in vivo, despite its importance for the understanding of bone formation and turnover. Our aim was to develop a method that could be used for the physiological and pathophysiological investigation of human bone collagen synthesis. We have carried out preliminary studies in patients undergoing hip replacement and in pigs to validate the use of the flooding dose method using 13C- or 15N-labelled proline and we have now refined our techniques to allow them to be used in a normal clinical or physiological setting. The results show that the application of a flooding dose causes bone free-proline labelling to equilibrate with that of blood in pigs and human beings, so that only 150 mg of bone will provide enough sample to prepare and measure the labelling of three fractions of bone collagen (dissolved in NaCl, acetic acid and pepsin/acetic acid) which have the same relative labelling (1.0:0.43:0.1) as measured by GC-combustion-isotope ratio MS. The rates of incorporation were substantially faster than in skeletal muscle samples taken at the same time. The results suggest that different fractions of human bone collagen turnover at markedly higher rates than had been previously considered. This approach should allow us to discover how growth and development, food, activity and drugs affect bone collagen turnover and to measure the effects on it of ageing and bone disease.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3