Functions and mechanisms of the GPCR adaptor protein Norbin

Author:

Chetwynd Stephen A.1,Andrews Simon2,Inglesfield Sarah2,Delon Christine1,Ktistakis Nicholas T.1ORCID,Welch Heidi C. E.1ORCID

Affiliation:

1. 1Signalling Programme, Babraham Institute, Cambridge, U.K.

2. 2Bioinformatics Facility, Babraham Institute, Cambridge, U.K.

Abstract

Norbin (Neurochondrin, NCDN) is a highly conserved 79 kDa adaptor protein that was first identified more than a quarter of a century ago as a gene up-regulated in rat hippocampus upon induction of long-term potentiation. Most research has focussed on the role of Norbin in the nervous system, where the protein is highly expressed. Norbin regulates neuronal morphology and synaptic plasticity, and is essential for normal brain development and homeostasis. Dysregulation of Norbin is linked to a variety of neurological conditions. Recently, Norbin was shown to be expressed in myeloid cells as well as neurons. Myeloid-cell specific deletion revealed an important role of Norbin as a suppressor of neutrophil-derived innate immunity. Norbin limits the ability of neutrophils to clear bacterial infections by curbing the responsiveness of these cells to inflammatory and infectious stimuli. Mechanistically, Norbin regulates cell responses through binding to its interactors, in particular to a wide range of G protein-coupled receptors (GPCRs). Norbin association with GPCRs controls GPCR trafficking and signalling. Other important Norbin interactors are the Rac guanine-nucleotide exchange factor P-Rex1 and protein kinase A. Downstream signalling pathways regulated by Norbin include ERK, Ca2+ and the small GTPase Rac. Here, we review the current understanding of Norbin structure, expression and its roles in health and disease. We also explore Norbin signalling through its interactors, with a particular focus on GPCR trafficking and signalling. Finally, we discuss avenues that could be pursued in the future to increase our understanding of Norbin biology.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3