Long-chain acyl-CoA ester intermediates of β-oxidation of mono- and di-carboxylic fatty acids by extracts of Corynebacterium sp. strain 7E1C

Author:

Broadway N M1,Dickinson F M1,Ratledge C1

Affiliation:

1. Department of Applied Biology, University of Hull, Cottingham Road, Hull HU6 7RX, U.K.

Abstract

beta-Oxidation of palmitate and tetradecanedioic acid was studied in cell-free extracts of the Gram-positive bacterium Corynebacterium sp. strain 7E1C, and the acyl-CoA ester intermediates formed were analysed by h.p.l.c. beta-Oxidation assays displayed a lag phase before a constant rate of NAD+ reduction was obtained. The length of the lag phase was inversely proportional to the number of units of activity added to assays. This is a characteristic feature of a system of consecutive reactions proceeding via free intermediates. During beta-oxidation of palmitate all the saturated acyl-CoAs from C16 to C8 were detected together with trace amounts of unsaturated and 3-hydroxy-intermediates. The time-course of intermediate formation again indicated a precursor-product relationship indicative of free intermediates being formed. When 3-hydroxyacyl-CoA dehydrogenase was inhibited by completely removing NAD+ from assays, the major acyl-CoAs, detected during palmitate beta-oxidation were palmitoyl-CoA, hexadeca-2-enoyl-CoA and 3-hydroxypalmitoyl-CoA. These compounds also displayed a precursor-product relationship. Under normal assay conditions the acyl-CoA dehydrogenase(s) are the probable rate-limiting enzyme(s) of the beta-oxidation spiral. These results indicate that in cell-free extracts of Corynebacterium sp. strain 7E1C, beta-oxidation proceeds via free acyl-CoA intermediates and is at variance with the concept of substrate channelling or of a ‘leaky hose pipe’ model as proposed for mitochondrial beta-oxidation in eukaryotic cells. The significant accumulation of chain-shortened acyl-CoA esters is similar to the situation observed for mammalian peroxisomal beta-oxidation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3