The design of peptide-based substrates for the cdc2 protein kinase

Author:

Srinivasan J1,Koszelak M1,Mendelow M1,Kwon Y G1,Lawrence D S1

Affiliation:

1. Departments of Chemistry and Medicinal Chemistry, Natural Sciences and Mathematics Complex, State University of New York, Buffalo, NY 14226, U.S.A.

Abstract

The substrate sequence specificity of the cdc2 protein kinase from Pisaster ochraceus has been evaluated. The peptide, Ac-Ser-Pro-Gly-Arg-Arg-Arg-Arg-Lys-amide, serves as an efficient cdc2 kinase substrate with a Km of 1.50 +/- 0.04 microM and a Vmax. of 12.00 +/- 0.18 mumol/min per mg. The amino acid sequence of this peptide is not based on any sequence in a known protein substrate of the cyclin-dependent kinase, but rather was designed from structural attributes that appear to be important in the majority of cdc2 substrates. The cyclin-dependent enzyme is remarkably indiscriminate in its ability to recognize and phosphorylate peptides that contain an assortment of structurally diverse residues at the P-2, P-1 and P+2 positions. However, peptides that contain a free N-terminal serine or lack an arginine at the P+4 position are relatively poor substrates. These aspects of the substrate specificity of the cdc2 protein kinase are compared and contrasted with the previously reported substrate specificity of a cdc2-like protein kinase from bovine brain [Beaudette, Lew and Wang (1993) J. Biol. Chem. 268, 20825-20830].

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3