Structural and functional insight into the different oxidation states of SAV1875 from Staphylococcus aureus

Author:

Kim Hyo Jung1,Kwon Ae-Ran2,Lee Bong-Jin1

Affiliation:

1. Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea

2. Department of Herbal Skin Care, College of Herbal Bio-industry, Daegu Haany University, Gyeongsan 712-715, Republic of Korea

Abstract

The DJ-1/ThiJ/PfpI superfamily is a group of proteins found in diverse organisms. This superfamily includes versatile proteins, such as proteases, chaperones, heat-shock proteins and human Parkinson's disease protein. Most members of the DJ-1/ThiJ/PfpI superfamily are oligomers and are classified into subfamilies depending on discriminating quaternary structures (DJ-1, YhbO and Hsp types). SAV1875, a conserved protein from Staphylococcus aureus, is a member of the YhbO-type subfamily. However, its structure and function remain unknown. Thus, to understand the function and activity mechanism of this protein, the crystal structure of SAV1875 from S. aureus was determined. The overall fold of SAV1875 is similar to that observed for the DJ-1/ThiJ/PfpI superfamily. The cysteine residue located in the dimeric interface (Cys105) forms a catalytic triad with His106 and Asp77, and it is spontaneously oxidized to Cys105-SO2H in the crystal structure. To study the oxidative propensity of Cys105 and the corresponding functional differences with changes in cysteine oxidation state, the crystal structures of SAV1875 variants E17N, E17D and C105D, and over-oxidized SAV1875 were determined. We identified SAV1875 as a novel member of the YhbO-type subfamily exhibiting chaperone function. However, if SAV1875 is over-oxidized further with H2O2, its chaperone activity is eliminated. On the basis of our study, we suggest that SAV1875 functions as a chaperone and the redox state of Cys105 may play an important role.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3