A subunit interface mutant of yeast pyruvate kinase requires the allosteric activator fructose 1,6-bisphosphate for activity

Author:

Collins R A1,McNally T1,Fothergill-Gilmore L A1,Muirhead H2

Affiliation:

1. Department of Biochemistry, University of Edinburgh, George Square, Edinburgh EH8 9XD, Scotland, U.K.

2. Deparment of Biochemistry and Molecular Recognition Centre, University of Bristol, Bristol BS8 1TD, U.K.

Abstract

A variant form of yeast pyruvate kinase (EC 2.7.1.40) with Ser-384 mutated to proline has been engineered in order to study the allosteric properties of this enzyme. Both the mutant and wild-type enzymes were overexpressed in a strain of yeast in which the genomic copy of the pyruvate kinase gene had been disrupted by an insertion of the Ura3 gene. Both enzymes were purified to homogeneity and their kinetic properties characterized. The wild-type enzyme displays sigmoid kinetics with respect to phosphoenolpyruvate (PEP) concentration, and is activated by the allosteric effect fructose 1,6-bisphosphate with concomitant reduction in co-operativity. In contrast, the mutant was found to be dependent on the presence of the effector for catalytic activity and was inactive in its absence. The fully activated mutant enzyme had a kcat. 1.6 times greater than that of the wild-type enzyme. The mutation introduced into the enzyme is in an intersubunit contact which is known to be critical for the allosteric properties of the enzyme, and is far removed from the active site. The major effect of the mutation seems to be to stabilize the low-affinity T state of the apoenzyme, although kcat. is also affected. The S0.5 for PEP and S0.5 for ADP of the wild-type enzyme were 0.22 +/- 0.004 and 0.15 +/- 0.01 mM respectively (means +/- S.E.M.). In the activated mutant enzyme, these kinetic parameters increased to 0.67 +/- 0.03 and 0.43 +/- 0.03 mM respectively. The cooperativity between ADP-binding sites was altered in the mutant enzyme, with the Hill coefficient (h) for ADP increasing to 1.65 +/- 0.07 in the presence of the effector, compared with a value of 0.01 +/- 0.07 for the wild-type enzyme under the same conditions. CD spectroscopy revealed the secondary structure of the mutant enzyme to be little different from that of the wild-type enzyme, indicating that the two enzymes have similar secondary structures in solution. Precise tertiary and quaternary structures such as intersubunit and interdomain interactions may be modified. An improved purification procedure has been devised that allows large quantities of enzyme to be rapidly prepared.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3