Mitsugumin29, a novel synaptophysin family member from the triad junction in skeletal muscle

Author:

TAKESHIMA Hiroshi1,SHIMUTA Misa1,KOMAZAKI Shinji2,OHMI Kazuhiro1,NISHI Miyuki1,IINO Masamitsu1,MIYATA Atsuro3,KANGAWA Kenji3

Affiliation:

1. Department of Pharmacology, Faculty of Medicine, University of Tokyo, and CREST, Japan Science and Technology Corporation, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

2. Department of Anatomy, Saitama Medical School, Moroyama-machi, Saitama 350-01, Japan

3. Department of Biochemistry, National Cardiovascular Center Research Institute, Suita, Osaka 565, Japan

Abstract

In skeletal muscle, excitation–contraction (E–C) coupling requires the conversion of the depolarization signal of the invaginated surface membrane, namely the transverse (T-) tubule, to Ca2+ release from the sarcoplasmic reticulum (SR). Signal transduction occurs at the junctional complex between the T-tubule and SR, designated as the triad junction, which contains two components essential for E–C coupling, namely the dihydropyridine receptor as the T-tubular voltage sensor and the ryanodine receptor as the SR Ca2+-release channel. However, functional expression of the two receptors seemed to constitute neither the signal-transduction system nor the junction between the surface and intracellular membranes in cultured cells, suggesting that some as-yet-unidentified molecules participate in both the machinery. In addition, the molecular basis of the formation of the triad junction is totally unknown. It is therefore important to examine the components localized to the triad junction. Here we report the identification using monoclonal antibody and primary structure by cDNA cloning of mitsugumin29, a novel transmembrane protein from the triad junction in skeletal muscle. This protein is homologous in amino acid sequence and shares characteristic structural features with the members of the synaptophysin family. The subcellular distribution and protein structure suggest that mitsugumin29 is involved in communication between the T-tubular and junctional SR membranes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3