A mutant mouse (tx) with increased hepatic metallothionein stability and accumulation

Author:

Koropatnick J12,Cherian M G2

Affiliation:

1. Departments of Oncology, and Microbiology and Immunology, University of Western Ontario, 790 Commissioners Road East, London, Ontario, Canada N6A 4L6

2. Department of Pathology, Health Sciences Centre, University of Western Ontario, London, Ontario, Canada N6A 5C1

Abstract

Metallothioneins (MTs) are low-molecular-mass cysteine-rich proteins implicated in metal homoeostasis and resistance to toxicity induced by heavy metals and alkylating agents. We report high hepatic MT protein accumulation (greater than 100-fold compared with wild-type mice) in toxic milk (tx) mice, along with markedly higher cytosol copper and zinc levels. Increased MT-gene transcription alone could not account for the high constitutive MT protein levels, since MT mRNA levels were not increased in tx mouse livers. However, hepatic MT was significantly more stable in adult tx mice: MT half-life (t1/2) was 79 or 77% greater than in wild-type mice before and after Cd induction respectively. Cd or Zn treatment increased MT mRNA, but not MT protein, accumulation in tx mouse livers: Cd displaced MT-bound Zn and Cu in preexisting MT. Thus tx mice appear to accumulate hepatic MT as a result of decreased protein degradation. These animals may provide a useful model to study the physiological role of MT, and human diseases (such as Wilson's disease) with abnormal copper metabolism.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diverse biological roles of the tetrathiomolybdate anion;Coordination Chemistry Reviews;2021-02

2. Toxic milk mice models of Wilson’s disease;Molecular Biology Reports;2021-02

3. Animal Models for Wilson Disease;Clinical and Translational Perspectives on WILSON DISEASE;2019

4. Animal Models of Wilson Disease;Wilson Disease;2019

5. Value of Serum Zinc in Diagnosing and Assessing Severity of Liver Disease in Children With Wilson Disease;Journal of Pediatric Gastroenterology & Nutrition;2018-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3