Ubiquinone biosynthesis in Escherichia coli K-12. Accumulation of an octaprenol, farnesylfarnesylgeraniol, by a multiple aromatic auxotroph

Author:

Hamilton J. A.1,Cox G. B.1

Affiliation:

1. Department of Biochemistry, John Curtin School of Medical Research, Australian National University, Canberra, A.C.T. 2601, Australia

Abstract

Cell extracts of a multiple aromatic auxotroph of Escherichia coli K-12, strain AB2830, grown in the absence of precursors of the quinone rings of the ubiquinone and menaquinone molecules, converted 4-hydroxy[U-14C]benzoate into a mixture of 3-octaprenyl-4-hydroxybenzoate and 2-octaprenylphenol. An octaprenol, farnesylfarnesylgeraniol, was isolated from such cell extracts and characterized by n.m.r. and mass spectroscopy. Neither the octaprenol, nor polyprenylation of 4-hydroxy[U-14C]benzoate, could be detected in cell extracts of strain AB2830 grown in the presence of 0.1mm-4-hydroxybenzoate. It was concluded that, in the biosynthesis of ubiquinone, the polyprenyl side chain is added to 4-hydroxybenzoate as a C40 unit, the active form of which is converted by cell extracts into farnesylfarnesylgeraniol. The multiple aromatic auxotroph, when grown in the absence of 4-hydroxybenzoate but in the presence of 4-aminobenzoate, converted the latter compound into 3-octaprenyl-4-aminobenzoate. This compound was isolated from whole cells and characterized by n.m.r. and mass spectroscopy.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3