Remodelling structure-based drug design using machine learning

Author:

Dutta Shubhankar1,Bose Kakoli12ORCID

Affiliation:

1. Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India

2. Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India

Abstract

To keep up with the pace of rapid discoveries in biomedicine, a plethora of research endeavors had been directed toward Rational Drug Development that slowly gave way to Structure-Based Drug Design (SBDD). In the past few decades, SBDD played a stupendous role in identification of novel drug-like molecules that are capable of altering the structures and/or functions of the target macromolecules involved in different disease pathways and networks. Unfortunately, post-delivery drug failures due to adverse drug interactions have constrained the use of SBDD in biomedical applications. However, recent technological advancements, along with parallel surge in clinical research have led to the concomitant establishment of other powerful computational techniques such as Artificial Intelligence (AI) and Machine Learning (ML). These leading-edge tools with the ability to successfully predict side-effects of a wide range of drugs have eventually taken over the field of drug design. ML, a subset of AI, is a robust computational tool that is capable of data analysis and analytical model building with minimal human intervention. It is based on powerful algorithms that use huge sets of ‘training data’ as inputs to predict new output values, which improve iteratively through experience. In this review, along with a brief discussion on the evolution of the drug discovery process, we have focused on the methodologies pertaining to the technological advancements of machine learning. This review, with specific examples, also emphasises the tremendous contributions of ML in the field of biomedicine, while exploring possibilities for future developments.

Publisher

Portland Press Ltd.

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. System simulation of multimedia English teaching based on network virtual resource sharing;International Journal of System Assurance Engineering and Management;2023-06-12

2. Traditional and Novel Computer-Aided Drug Design (CADD) Approaches in the Anticancer Drug Discovery Process;Current Cancer Drug Targets;2023-05

3. Applications of AI in Computer-Aided Drug Discovery;Applying AI-Based IoT Systems to Simulation-Based Information Retrieval;2023-02-17

4. SBDD and Its Challenges;Challenges and Advances in Computational Chemistry and Physics;2023

5. Prediction of inhibitory activities of small molecules against Pantothenate synthetase from Mycobacterium tuberculosis using Machine Learning models;Computers in Biology and Medicine;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3