Long non-coding RNA MEG3 serves as a ceRNA for microRNA-145 to induce apoptosis of AC16 cardiomyocytes under high glucose condition

Author:

Chen Yiwei1,Zhang Zhifang1,Zhu Diqi1,Zhao Wenchuo1,Li Fen1ORCID

Affiliation:

1. Department of Cardiology, Shanghai Children’s Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China

Abstract

Abstract Diabetic cardiomyopathy (DCM) is one of the most serious complications of diabetes, but its pathogenesis remains largely unclear. In the present study, we aimed to explore the potential role of long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) and to investigate the underlying mechanisms in human AC16 cardiomyocytes under high glucose (HG) condition. The results demonstrated that MEG3 was overexpressed in HG-treated AC16 cells, and MEG3 knockdown suppressed the HG-induced apoptosis in AC16 cells. Mechanistically, MEG3 directly binds to miR-145 in AC16 cells, thereby up-regulating the expression of PDCD4. Rescue experiments showed that the role of MEG3 in HG-treated AC16 cells was partly dependent on its suppression on miR-145. In summary, our findings suggested that the role of MEG3 in HG-treated human cardiomyocytes is to serve as a competing endogenous RNA (ceRNA), which negatively regulates miR-145. These findings may provide a valuable and promising therapeutic target for the treatment of DCM in the future.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3