Bioinformatics analysis of prognostic value of TRIM13 gene in breast cancer

Author:

Chen Wei-xian12ORCID,Cheng Lin1,Xu Ling-yun1,Qian Qi1,Zhu Yu-lan1

Affiliation:

1. Department of Breast Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China

2. Post-doctoral Working Station, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China

Abstract

Abstract Background: Tripartite motif 13 (TRIM13) plays a significant role in various biological processes including cell growth, apoptosis, transcriptional regulation, and carcinogenesis. However, the prognostic significance of TRIM13 gene in breast cancer treatment remains largely unclear. Methods: We performed a bioinformatics analysis of the clinical parameters and survival data as it relates to TRIM13 in breast cancer patients using several online databases including Oncomine, bcGenExMiner, PrognoScan, and UCSC Xena. Results: We found that TRIM13 was lower-expressed in different subtypes of breast cancer with respect to normal tissues. Estrogen receptor and progesterone receptor status were positively correlated with TRIM13 level; whereas, the Scarff–Bloom–Richardson grade, Nottingham prognostic index, nodal status, basal-like status, and triple-negative status were negatively related to TRIM13 expression in breast cancer patients with respect to normal individuals. Lower TRIM13 expression correlated with worse distant metastasis free survival, relapse free survival, disease specific survival, and metastatic relapse free survival. We also confirmed a positive correlation between TRIM13 and RAB11FIP2 gene expression. Conclusion: Bioinformatics analysis revealed that TRIM13 may be adopted as a promising predictive biomarker for prognosis of breast cancer. More in-depth experiments and clinical trials are needed to validate the value of TRIM13 in breast cancer treatment.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3